Sains Malaysiana 53(8)(2024): 1873-1887

http://doi.org/10.17576/jsm-2024-5308-12

 

Ingestion of Microplastics in the Planktonic Copepod from the Indonesian Throughflow Pathways

(Pengambilan Mikroplastik dalam Kopepod Planktonik dari Laluan Arus Lintas Indonesia)

 

CORRY YANTI MANULLANG1,2,3, MUFTI PETALA PATRIA1,*, AGUS HARYONO4, SABIQAH TUAN ANUAR 5,6, RADEN DWI SUSANTO7,8, MALIK SUDIN ABDUL2, MUHAMMAD FADLI2,3 & ZEXUN WEI9

 

1Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, 16424, Depok, Indonesia

2Research Center for Deep Sea, National Research and Innovation Agency (BRIN), 97233, Ambon, Indonesia

3Center for Collaborative Research on Aquatic Ecosystem in Eastern Indonesia, 97233, Ambon, Indonesia

4Research Center for Chemistry, National Research and Innovation Agency (BRIN), 15314, Serpong, Indonesia

5Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

6Microplastic Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

7Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD20742, USA

8Marine-Estuarine and Environmental Sciences, University of Maryland, College Park, MD20742, USA

9First Institute Oceanography, Ministry of Natural Resources, Qingdao, P.R. China

 

Received: 7 March 2024/Accepted: 28 June 2024

 

Abstract

Zooplankton are vulnerable to microplastics in the waters due to their indiscriminate feeding habits. Zooplankton consumption of microplastics affects microplastic accumulation and transmission in the marine ecosystem. Therefore, it is essential to know the intake and transmission by different group sizes of zooplankton in natural seawater. This study documented for the first time the levels of microplastics found in three sizes of copepods along the Indonesian Throughflow (ITF) pathways. The ingestion rates were 0.028, 0.023 and 0.016 n/ind for group sizes copepod 1000-2000 µm, 500-1000 µm and 200-500 µm, respectively. There was no significant distinction in the microplastics concentrations of the three groups of copepod classes along the ITF pathway (p>0.005). Fiber microplastics were the most dominant in the body of copepods, constituting 87.22% of ingested microplastics. In terms of the chemical composition of the microplastic, a total of 7 polymers were detected in copepods in the ITF pathway. The three predominant polymer types identified were polyvinyl butyral (PVB), polyvinyl ether maleic anhydride (PVEMA) and polyester (PES) (27%, 27% and 20%, respectively). This study provides the critical parameters of the microplastic in copepods in the ITF pathway and is an essential basis for further ecological risk assessments of microplastics in biota species.

 

Keywords: Copepod; Indonesian throughflow; microplastic; zooplankton

 

Abstrak

Zooplankton terdedah kepada mikroplastik di perairan kerana tabiat pemakanan mereka yang tidak memilih. Pengambilan mikroplastik oleh zooplankton menjejaskan pengumpulan dan pemindahan mikroplastik dalam ekosistem marin. Oleh itu, adalah penting untuk mengetahui pengambilan dan pemindahan mengikut saiz kumpulan zooplankton yang berbeza di dalam air laut. Kajian ini pertama kalinya mendokumenkan tahap mikroplastik yang ditemui dalam tiga saiz kopepod di sepanjang laluan Arus Lintas Indonesia (ITF). Kadar pengingesan adalah 0.028, 0.023 dan 0.016 n/ind untuk saiz kumpulan kopepod masing-masing adalah 1000-2000 µm, 500-1000 µm dan 200-500 µm. Tiada perbezaan ketara dalam kepekatan mikroplastik tiga kumpulan kelas kopepod di sepanjang laluan ITF (p>0.005). Mikroplastik gentian adalah yang paling dominan dalam badan kopepod, membentuk 87.22% daripada mikroplastik yang tertelan. Dari segi komposisi kimia mikroplastik, sejumlah 7 polimer telah dikesan dalam kopepod dalam Laluan ITF. Tiga jenis polimer utama yang dikenal pasti ialah polivinil butiral (PVB), polivinil eter malik anhidrida (PVEMA) dan poliester (PES) (masing-masing 27%, 27% dan 20%). Kajian ini menyediakan parameter kritikal mikroplastik dalam kopepod dalam laluan ITF dan merupakan asas penting untuk penilaian risiko ekologi lanjutan mikroplastik dalam spesies biota.

 

Kata kunci: Arus Lintas Indonesia (ITF); kopepod; mikroplastik; zooplankton

 

REFERENCES

Amelinda, C., Werorilangi, S., Burhanuddin, A.I. & Tahir, A. 2021. Occurrence of microplastic particles in Milkfish (Chanos chanos) from brackishwater ponds in Bonto Manai Village, Pangkep Regency, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science 763: 012058.

Amin, R.M., Sohami, E.S., Anuar, S.T. & Bachok, Z. 2020. Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Marine Pollution Bulletin 150: 110616. 

Araujo, A.V., Dias, C.O. & Bonecker, S.L.C. 2017. Differences in the structure of copepod assemblages in four tropical estuaries: Importance of pollution and the estuary hydrodynamics. Marine Pollution Bulletin 115: 412-420. 

Aytan, U., Esensoy, F.B. & Senturk, Y. 2022. Microplastic ingestion and egestion by copepods in the Black Sea. Science of The Total Environment 806: 150921. 

Besseling, E., Wang, B., Lürling, M. & Koelmans, A.A. 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science and Technology 48(20): 12336-12343. 

Boerger, C.M., Lattin, G.L., Moore, S.L. & Moore, C.J. 2010. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Marine Pollution Bulletin 60(12): 2275-2278. 

Botterell, Z.L., Bergmann, M., Hildebrandt, N., Krumpen, T., Steinke, M., Thompson, R.C. & Lindeque, P.K. 2022. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Science of the Total Environment 831: 154886. 

Botterell, Z.L., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R.C. & Lindeque, P.K. 2019. Bioavailability and effects of microplastics on marine zooplankton: A review. Environmental Pollution 245: 98-110. 

Browne, M.A., Crump, P., Niven, S., Teuten, E., Tonkin, A., Galloway, T. & Thompson, R. 2011. Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science and Technology 45: 9175-9179. 

Bucci, K., Tulio, M. & Rochman, C.M. 2020. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecological Applications 30(2): e02044. 

Camlibel, N.O. 2018. Polyester - Production, Characterization and Innovative Applications. InTech

Cedervall, T., Hansson, L.A., Lard, M., Frohm, B. & Linse, S. 2012. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 7(2): e32254. 

Choy, C.A., Robison, B.H., Gagne, T.O., Erwin, B., Firl, E., Halden, R.U., Hamilton, J.A., Katija, K., Lisin, S.E., Rolsky, C. & Van Houtan, K.S. 2019. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Scientific Reports 9: 7843. 

Cole, M., Coppock, R., Lindeque, P.K., Altin, D., Reed, S., Pond, D.W., Sørensen, L., Galloway, T.S. & Booth, A. 2019. Effects of nylon microplastic on feeding, lipid accumulation, and molting in a coldwater copepod. Environmental Science & Technology 53: 7075-7082. 

Cole, M., Lindeque, P, Fileman, E, Halsband, C. & Galloway, T.S. 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology 49(2): 1130-1137. 

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J. & Galloway, T.S. 2013. Microplastic ingestion by zooplankton. Environmental Science & Technology 47(12): 6646-6655. 

Cordova, M.R., Riani, E. & Shiomoto, A. 2020. Microplastics ingestion by blue panchax fish (Aplocheilus sp.) from Ciliwung Estuary, Jakarta, Indonesia. Marine Pollution Bulletin 161: 111763. 

Cordova, M.R., Ulumuddin, Y.I., Purbonegoro, T. & Shiomoto, A. 2021. Characterization of microplastics in mangrove sediment of Muara Angke Wildlife Reserve, Indonesia. Marine Pollution Bulletin 163: 112012. 

Costa, E., Piazza, V., Lavorano, S., Faimali, M., Garaventa, F. & Gambardella, C. 2020. Trophic transfer of microplastics from copepods to jellyfish in the marine environment. Frontiers in Environmental Science 8: 571732. 

Cózar, A., Echevarría, F., Ignacio, J., Irigoien, X., Úbeda, B., Palma, Á.T., Navarro, S., Ruiz, A.L.M. & Duarte, C.M. 2014. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences 111(28): 10239-10244. 

Davison, P. & Asch, R.G. 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Marine Ecology Progress Series 432: 173-180. 

Demir, Y.K., Metin, A.Ü., Şatıroğlu, B., Solmaz, M.E., Kayser, V. & Mäder, K. 2017. Poly (methyl vinyl ether-co-maleic acid) – Pectin based hydrogel-forming systems: Gel, film, and microneedles. European Journal of Pharmaceutics and Biopharmaceutics 117: 182-194. 

Desforges, J.P.W., Galbraith, M. & Ross, P.S. 2015. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology 69(3): 320-330.

Domínguez-López, M., Bellas, J., Sánchez-Ruiloba, L., Planas, M. & Hernández Urcera, J. 2022. First evidence of ingestion and retention of microplastics in seahorses (Hippocampus reidi) using copepods (Acartia tonsa) as transfer vectors. Science of The Total Environment 818: 151688. 

Duncan, E.M., Broderick, A.C., Fuller, W.J., Galloway, T.S., Godfrey, M.H., Hamann, M., Limpus, C.J., Lindeque, P.K., Mayes, A.G., Omeyer, L.C.M., Santillo, D., Snape, R.T. E. & Godley, B.J. 2019. Microplastic ingestion ubiquitous in marine turtles. Global Change Biology 25(2): 744-752. 

Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F. & Ryan, J.R. 2014. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9(12): e111913. 

Falahudin, D., Cordova, M.R., Sun, X., Yogaswara, D., Wulandari, I., Hindarti, D. & Arifin, Z. 2020. The first occurrence, spatial distribution and characteristics of microplastic particles in sediments from Banten Bay, Indonesia. Science of The Total Environment 705: 135304. 

Farrell, P. & Nelson, K. 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution 177: 1-3. 

Fibbe, M.C., Carroll, D., Gowans, S. & Siuda, A.N. 2023. Ingestion of microplastics by copepods in Tampa Bay Estuary, FL. Frontiers in Ecology and Evolution 11: 1143377. 

Germanov, E.S., Marshall, A.D., Hendrawan, I.G., Admiraal, R., Rohner, C.A., Argeswara, J., Wulandari, R., Himawan, M.R. & Loneragan, N.R. 2019. Microplastics on the menu: Plastics pollute Indonesian manta ray and whale shark feeding grounds. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00679

Gordon, A., Sprintall, J., Van Aken, H., Susanto, D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W. & Wirasantosa, S. 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans 50(2): 115-128. 

Hemraj, D.A., Hossain, M.A., Ye, Q., Qin, J.G. & Leterme, S.C. 2017. Plankton bioindicators of environmental conditions in coastal lagoons. Estuarine, Coastal and Shelf Science 184: 102-114. 

International Council for the Exploration of the Sea (ICES). 2015. OSPAR request on development of a common monitoring protocol for plastic particles in fish stomachs and selected shellfish on the basis of existing fish disease surveys. https://ices library.figshare.com/articles/report/OSPAR_request_on_development_of_a_common_monitoring_protocol_for_plastic_
particles_in_fish_stomachs_and_selected_shellfish_on_the_basis_of_existing_fish_disease_surveys/18687095

Kama, N.A., Rahim, S.W. & Yaqin, K. 2021. Microplastic concentration in column seawater compartment in Burau, Luwu Regency, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science 763: 012061. 

Kane, I.A., Clare, M.A., Miramontes, E., Wogelius, R., Rothwell, J.J., Garreau, P. & Pohl, F. 2020. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368: 1140-1145. 

Kanhai, L.D.K., Officer, R., Lyashevska, O., Thompson, R.C. & O'Connor, I. 2017. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean. Marine Pollution Bulletin 115(1-2): 307-314. 

Karami, A., Golieskardi, A., Ho, Y.B., Larat, V. & Salamatinia, B. 2017. Microplastics in eviscerated flesh and excised organs of dried fish. Scientific Reports 7: 5473. 

Kim, L., Cui, R., Kwak, J.I. & An, Y.J. 2022. Sub-acute exposure to nanoplastics via two-chain trophic transfer: From brine shrimp Artemia franciscana to small yellow croaker Larimichthys polyactis. Marine Pollution Bulletin 175: 113314. 

Lebreton, L., Slat, B., Ferrari, F., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Brambini, R. & Reisser, J. 2018. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports 8(1): 1-15. 

Lee, K.W., Shim, W.J., Kwon, O.Y. & Kang, J.H. 2013. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental Science & Technology 47: 11278-11283. 

Li, M., Gordon, A.L., Wei, J., Gruenburg, L.K. & Jiang, G. 2018. Multi-decadal timeseries of the Indonesian throughflow. Dynamics of Atmospheres and Oceans 81: 84-95. 

Lima, C., Melo Júnior, M., Schwamborn, S., Kessler, F., Oliveira, L., Ferreira, B., Mugrabe, G., Frias, J. & Neumann-Leitão, S. 2023. Zooplankton exposure to microplastic contamination in an estuarine plume-influenced region in Northeast Brazil. Environmental Pollution 322: 121072. 

Lusher, A.L., Tirelli, V., O’Connor, I. & Officer, R. 2015. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Scientific Reports 5: 1-10. 

Manullang, C.Y., Patria, M.P., Haryono, A., Anuar, S.T., Fadli, M., Susanto, R.D. & Wei, Z. 2024. Vertical distribution of microplastic along the main gate of Indonesian throughflow pathways. Marine Pollution Bulletin 199: 115954. 

McKeen, L.W. 2016. Polyolefins, polyvinyls, and acrylics. Permeability Properties of Plastics and Elastomers (Fourth Edition), edited by McKeen, L.W. Norwich: William Andrew. pp. 157-207. 

Moore, C.J. 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 108(2): 131-139. 

Murray, F. & Cowie, P.R. 2011. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin 62(6): 1207-1217. 

Napper, I.E. & Thompson, R.C. 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin 112(12): 39-45. 

Ningrum, E.W. & Patria, M.P. 2022. Microplastic contamination in Indonesian anchovies from fourteen locations. Journal of Biological Diversity 23(1): 125-134. 

Obbard, R.W., Sadri, S., Wong, Y.Q., Khitun, A.A., Baker, I. & Thompson, R.C. 2014. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future 2(6): 315-320. 

Ortega-Borchardt, J.Á., Ramírez-Álvarez, N., Rios Mendoza, L.M., Gallo-Reynoso, J.P., Barba-Acuña, I.D., García-Hernández, J., Égido-Villarreal, J. & Kubenik, T. 2022. Detection of microplastic particles in scats from different colonies of California sea lions (Zalophus californianus) in the Gulf of California, Mexico: A preliminary study. Marine Pollution Bulletin 186: 114433. 

Peng, X., Chen, M., Chen, S., Dasgupta, S., Xu, H., Ta, K., Du, M., Li, J., Guo, Z. & Bai, S. 2018. Microplastics contaminate the deepest part of the world’s ocean. Geochemical Perspectives Letters 9: 1-5.

Rashid, C.P., Jyothibabu, R., Arunpandi, N., Santhikrishnan, S., Vidhya, V., Sarath, S., Arundhathy, M. & Alok, K.T. 2022. Microplastics in copepods reflects the manmade flow restrictions in the Kochi backwaters, along the southwest coast of India. Marine Pollution Bulletin 177: 113529. 

Rashid, C., Jyothibabu, R., Arunpandi, N., Abhijith, V., Josna, M., Vidhya, V., Gupta, G. & Ramanamurty, M. 2021. Microplastics in zooplankton in the eastern Arabian Sea: The threats they pose to fish and corals favoured by coastal currents. Marine Pollution Bulletin 173: 113042. 

Rochman, C.M., Tahir, A., Williams, S.L., Baxa, D.V., Lam, R., Miller, J.T., Teh, F., Werorilangi, S. & Teh, S.J. 2015. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports 5(1): 1-10. 

Rochman, C.M., Hoh, E., Kurobe, T. & Teh, S.J. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports 3(1): 1-7. 

Sawalman, R., Zamani, N.P., Werorilangi, S. & Ismet, M.S. 2021. Spatial and temporal distribution of microplastics in the surface waters of Barranglompo Island, Makassar. IOP Conference Series: Earth and Environmental Science 860: 012098. 

Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. 2014. Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution 185: 77-83. 

Shahbazi, A., Almeida, P.V., Mäkilä, E., Correia, A., Ferreira, M.P.A., Kaasalainen, M., Salonen, J., Hirvonen, J. & Santos, H.A. 2014. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization. Macromolecular Rapid Communications 35(6): 624-629. 

Sun, X., Li, Q., Zhu, M., Liang, J., Zheng, S. & Zhao, Y. 2017. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine Pollution Bulletin 115(1-2): 217-224.

Susanto, R.D., Wei, Z., Adi, R.T., Fan, B., Li, S. & Fang, G. 2013. Observations of the Karimata Strait througflow from December 2007 to November 2008. Acta Oceanologica Sinica 32: 1-6. 

Susanto, R.D., Fang, G., Soesilo, I., Zheng, Q., Qiao, F., Wei, Z. & Sulistyo, B. 2010. New surveys of a branch of the Indonesian Throughflow. Eos, Transactions American Geophysical Union 91(30): 261-263. 

Tahir, A., Soeprapto, D.A., Sari, K., Wicaksono, E.A. & Werorilangi, S. 2020. Microplastic assessment in seagrass ecosystem at Kodingareng Lompo Island of Makassar City. IOP Conference Series: Earth and Environmental Science 564: 012032. 

Tahir, A., Samawi, M.F., Sari, K., Hidayat, R., Nimzet, R., Wicaksono, E.A., Asrul, L. & Werorilangi, S. 2019. Studies on microplastic contamination in seagrass beds at Spermonde Archipelago of Makassar Strait, Indonesia. Journal of Physics: Conference Series 1341(2): 022008. 

Ugwu, K., Herrera, A. & Gómez, M. 2021. Microplastics in marine biota: A review. Marine Pollution Bulletin 169: 112540. 

Van Cauwenberghe, L., Vanreusel, A., Mees, J. & Janssen, C.R. 2013. Microplastic pollution in deep-sea sediments. Environmental Pollution 182: 495-499. 

Van Franeker, J.A., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., Hansen, P., Heubeck, M., Jensen, J., Le Guillou, G., Olsen, B., Olsen, K., Pedersen, J., Stienen, E.W. & Turner, D.M. 2011. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environmental Pollution 159(10): 2609-2615. 

Van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B.D., Van Franeker, J.A., Eriksen, M., Siegel, D., Galgani, F. & Law, K.L. 2015. A global inventory of small floating plastic debris. Environmental Research Letters 10: 124006. 

Vassilenko, K., Watkins, M., Chastain, S., Posacka, A. & Ross, P. 2019. Me, my clothes and the ocean: The role of textiles in microfiber pollution. Ocean Wise Conservation Association Science Feature. p. 16.

Vroom, R.J.E., Koelmans, A.A., Besseling, E. & Halsband, C. 2017. Aging of microplastics promotes their ingestion by marine zooplankton. Environmental Pollution 231: 987-996. 

Wicaksono, E.A., Tahir, A. & Werorilangi, S. 2020. Preliminary study on microplastic pollution in surface-water at Tallo and Jeneberang Estuary, Makassar, Indonesia. AACL Bioflux13(2): 902-909.

Yu, J., Tian, J.Y., Xu, R., Zhang, Z.Y., Yang, G.P., Wang, X.D., Lai, J.G. & Chen, R. 2020. Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod). Environmental Pollution 267: 115429. 

Yuan, D., Corvianawatie, C., Cordova, M.R., Surinati, D., Li, Y., Wang, Z., Li, X., Li, R., Wang, J., He, L., Yuan, A.N., Dirhamsyah, D., Arifin, Z., Sun, X. & Isobe, A. 2023. Microplastics in the tropical Northwestern Pacific Ocean and the Indonesian seas. Journal of Sea Research 194: 102406. 

Zavala-Alarcón, F.L., Huchin-Mian, J.P., González-Muñoz, M.D.P. & Kozak, E.R. 2023. In situ microplastic ingestion by neritic zooplankton of the central Mexican Pacific. Environmental Pollution 319: 120994. 

Zheng, S., Zhao, Y., Liu, T., Liang, J., Zhu, M. & Sun, X. 2021. Seasonal characteristics of microplastics ingested by copepods in Jiaozhou Bay, the Yellow Sea. Science of the Total Environment 776: 145936. 

Zughaibi, T.A. & Steiner, R.R. 2021. Forensic analysis of polymeric carpet fibers using direct analysis in real time coupled to an AccuTOF™ mass spectrometer. Polymers 13(16): 2687. 

 

*Corresponding author; email: mpatria@sci.ui.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next